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We extended the previously described dynamic pharmacophore model studies of HIV-1 integrase (IN) by
considering more key residues in the active site, including Mg2+. First, we applied a Monte Carlo sampling
method to map the complementary features of the IN binding surface. Two types of dynamic pharmacophore
models were generated. One considers Mg2+ as part of the IN and therefore as an excluded volume, and the
other treats Mg2+ as a positively charged feature, representing a new type of pharmacophore model aimed
to identify compounds potentially preventing Mg2+ binding. Second, we validated the models with 385
known active (IC50 < 20 µM) and 235 (IC50 > 100µM) inactive IN inhibitors. Third, we used the derived
models to screen our small molecule database. Twenty-two structurally novel compounds were tested in an
in vitro assay specific for IN, and two of them showed IC50 e 10 µM for strand transfer reaction.

Introduction

Human immunodeficiency virus (HIV) is the causative agent
of acquired immunodeficiency syndrome (AIDS), which is one
of the most serious health problems in the world. HIV encodes
three enzymes: protease, reverse transcriptase, and integrase
(IN). Currently, treatment for HIV infection includes the
combination of inhibitors of the reverse transcriptase and
protease (HAART). Problems of drug toxicity and drug
resistance may be reduced via the inhibition of a new HIV target.
IN is an attractive and a validated target for anti-AIDS drug
design because of its crucial role in the viral life cycle and the
fact that there is no cellular homologue in humans. In addition,
IN is a testable target because rapid and sensitive assays exist
for measuring enzymatic activity, and crystal and NMR
structures are available for use in rational structure-based drug
design.1 However, IN is a difficult system for structure-based
drug discovery for a number of reasons. It contains a shallow
substrate binding site positioned on the surface of the protein;
it also plays a role in the formation of a multimeric complex in
preintegration complexes, and finally, the lack of a full-length
structure for the enzyme in the absence or presence of a DNA
substrate, all complicate the rational drug design process.

Many IN inhibitors have been identified, and two have been
tested in clinical trials.2-9 Several pharmacophore models have
been developed based on sets of the active inhibitors, and a
series of novel categories of inhibitors have been discovered.10-12

The dynamic pharmacophore method, developed by Carlson,13

introduced for the first time the “dynamic” concept in IN drug
design. The dynamic pharmacophore method considers multiple
receptor conformations that are used to generate a receptor-
based pharmacophore model. The initial model was then
successfully used to identify two active inhibitors against IN
(IC50 ∼ 25 µM) through the searching of available compound
databases.13 In that model, only hydrogen bond donor sites were

identified by the methanol probes that only associated with D64
and D116. That model included neither metal ions nor residue
E152 due to the limited crystallographic information for such
at that time.

Our recently reported dynamic receptor-based model was
derived using the LigBuilder program. The ligand orientation,
as revealed in the crystal complex (1QS4), was used to define
the binding site, and Mg2+ was treated as a charged protein
atom and as an excluded volume in the pharmacophore model.
Its application in database screening was successfully able to
recognize some structurally novel IN inhibitors.14 However, the
limitation of this approach is the requirement of a ligand-bound
complex.

Therefore, in this work, we performed pure receptor-based
dynamic pharmacophore model studies to conceptually extend
the previous work by (i) applying different types of functional
fragments as probes to map the complementary features of the
IN binding surface via a Monte Carlo sampling algorithm, (ii)
building dynamic pharmacophore models by considering Mg2+-
as an excluded volume or a charged feature in the model,
respectively, and (iii) screening databases by the derived models
and selecting structurally novel molecules for an IN specific
enzyme assay.

Computational Methods

The Monte Carlo software package for biomolecular systems,
BOSS 4.0, was used in our study to perform a Metropolis
configurational sampling of new configurations by probe
molecules in association with each of the protein conformations.
The initial molecular system consists of a rigid protein
conformation and a sphere of hundreds of probe atoms/
molecules (e.g., methyl, benzyl, methanol, ammonium, etc.)
centered on the active site of the enzyme. A Metropolis Monte
Carlo algorithm is then employed to randomly select and move
probe groups, generating new system configurations. If the new
intermolecular configuration is lower in energy than its prede-
cessor, the new one is always accepted leading to large
populations of minimum energy configurations. If the new
configuration, however, is higher in energy than its predecessor,
a Boltzmann factor (BF), defined in eq 1, is compared to a
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random number between 0 and 1 to decide whether the new
configuration will be accepted

wherekB is Boltzmann’s constant,U is the potential energy,
andT is the temperature. If the BF is greater than the random
number, the new configuration is accepted; otherwise, it is
rejected. The acceptance condition can be written in the
following concise fashion (eq 2) for the NPT (constant mass,
pressure, and temperature) ensemble

where rand(0,1) is a machine-generated random number between
0 and 1.

The size of the displacement at each iteration is governed by
the maximum displacement. This is an adjustable parameter
whose value is usually chosen so that approximately 50% of
the trial moves are accepted.

In this work, all of the Monte Carlo simulations were
performed under an NPT ensemble with the OPLS (Optimized
Potentials for Liquid Simulations) all atom force field.15,16The
BOSS program generates hundreds of nonoverlapping probes
within the specified active site area. The probes only see the
target protein (i.e., probe-probe interactions were set to zero).
The Monte Carlo simulation is effectively a simulated annealing
of the probe molecules against the protein. The probes cluster
themselves within local minima in the active site region; the
clustered probes define the favored binding regions in the active
site for that specific functionality.

Probe.Four types of functional groups were used to sample
the active surface of IN: (i) chloride (Cl-) representing a
negatively charged group, (ii) methanol (CH3OH) representing
H-bonding features (i.e., functioning as either an H-bond donor
or an H-bond acceptor depending upon the neighboring amino
acid residues), (iii) ammonium ion (NH4+) representing a
positively charged group, and (iv) methane (CH4) representing
a hydrophobic feature. As mentioned, the functional group
probes were effectively modeled as noninteracting solvent
molecules (i.e., they do not interact with one another but do
interact with the protein) in the employed Monte Carlo
procedure.

Protein. A total of 10 snapshots of IN were collected at equal
time intervals from prior molecular dynamics (MD) simula-
tions,17 which were performed on the wild-type IN (PDB code
1QS418 in which the ligand 5-CITEP was removed). Choosing
snapshots derived from ligated complexes is an important choice
since it has been demonstrated that the use of ligand-complexed
protein structures greatly enhances the probability of correctly
identifying complex structures by docking.19,20 Each snapshot
with no water molecules was used as a target for the minimiza-
tion of probes via the described Monte Carlo procedure. The
metal ion (Mg2+) between D64 and D116 in the catalytic site
was retained in the protein conformations. The protein structure
was treated as a solute molecule and was kept entirely rigid
and immobile during the Monte Carlo procedure.

Parameter Assignment. The side chain oxygen (Oδ) of
residue Q62 was selected to be the center of the active site13

and was used to define a 19 Å sphere containing hundreds of
probe molecules. A boundary force constant of 5 kcal/mol was
used to keep the small molecules from wandering beyond the
sphere, while no probes were initially within 1.5 Å of the protein
surface, as previously described.13 In addition to the protein
being kept rigid during the energy minimizations, the probes

were also held internally rigid. During each Monte Carlo step,
a probe was randomly chosen and translated up to 0.15 Å and
rotated by 15° around a randomly chosen Cartesian axis. The
solute-solvent cutoff was set to 150 Å so that each probe
interacted with the entire protein (the protein has dimensions
of ca. 62 Å× 62 Å × 62 Å). The Monte Carlo studies were
carried out under 1 atmospheric pressure and a dielectric
constant of 1.0. The number of configurations generated during
the annealing procedure was 1 000 000 at each of the following
temperatures, 300, 200, 100, and 0°C, and 2 000 000 at-100
°C (i.e., a total of 6 000 000 configurations were sampled per
probe).

Probe Clustering. At the end of a Monte Carlo run, each
probe was assigned to a given cluster, which was sorted
according to interaction energies with the protein. For example,
the probe with the most favorable interaction energy was the
parent of the first cluster (e.g., cluster 1). All other probes within
a user-defined RMSD (2.0 Å in this study) were assigned to
cluster 1. The parent of the second cluster was the probe
molecule with the most favorable interaction energy that was
not already a member of cluster 1. All probes within the same
RMSD (2.0 Å) to parent 2, but that were not part of cluster 1,
were assigned to cluster 2, and so on, until all probes were
assigned to local minima (i.e., clusters) on the surface of the
receptor. InsightII,21 the Swiss PDB Viewer,22 and VMD23 were
used to analyze the clusters.

Developing the Receptor-Based Pharmacophore Models.
All 10 of the protein snapshots together with their associated
probe clusters (represented by the cluster parents) were overlaid
via five residues (D64, D116, E152, K156, and K159) in order
to identify the consensus probe binding sites. The identified
consensus sites were used to locate the elements of the dynamic
pharmacophore model. We defined a consensus site as contain-
ing at least four clusters covering a wide range of the MD
conformations; that is, a site was not considered as conserved
if it was only observed for structures from the beginning or the
end of the MD simulation. The centers and the radii of the
feature sites were calculated from the Cartesian coordinates of
the central atoms (C of CH4, O of CH3OH, Cl-, and N of NH4

+,
respectively) of all parent probes in an individual consensus
site. Therefore, the center of each functional feature site in the
pharmacophore model was equal to the average position of the
central atoms of the parents in each site, and the radii were set
to the RMSD of all of the central parent atoms in the site.
Catalyst24 was then used to represent the spatial arrangement
of the pharmacophore elements.

Model Validation and Database Screening.The model was
validated by searching it against known IN inhibitors collected
from publications in the last 10 years. Two small databases
containing 385 active inhibitors (IC50 < 20 µM for either the
3′-processing or the strand transfer reaction) and 235 inactive
compounds (IC50 > 100 µM for both 3′-processing and strand
transfer), respectively, were build by the CatDB module in
Catalyst. The validated model was used as a searching query
to screen a small-molecule compounds database with the
Catalyst software.

Experimental Methods

Materials, Chemicals, and Enzymes. All compounds were
dissolved in DMSO, and the stock solutions were stored at-20
°C. The γ-[32P]ATP was purchased from either Amersham Bio-
sciences or ICN. The expression systems for the wild-type IN and
soluble mutant INF185KC280S were generous gifts of Dr. Robert
Craigie, Laboratory of Molecular Biology, NIDDK, NIH (Bethesda,
MD).

BF ) ∑ e-∆U/kBT (1)

rand(0,1)e e-∆H/kBT (2)
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Preparation of Oligonucleotide Substrates.The oligonucle-
otides 21top, 5′-GTGTGGAAAATCTCTAGCAGT-3′, and 21bot,
5′-ACTGCTAGAGATTTTCCACAC-3′, were purchased from Nor-
ris Cancer Center Microsequencing Core Facility (University of
Southern California) and purified by UV shadowing on polyacry-
lamide gel. To analyze the extent of 3′-processing and strand transfer
using 5′-end-labeled substrates, 21top was 5′-end-labeled using T4
polynucleotide kinase (Epicenter, Madison, WI) andγ-[32P]ATP
(Amersham Biosciences or ICN). The kinase was heat-inactivated,
and 21bot was added in 1.5 M excess. The mixture was heated at
95 °C, allowed to cool slowly to room temperature, and run through
a spin 25 minicolumn (USA Scientific, Ocala, FL) to separate
annealed double-stranded oligonucleotide from unincorporated
material.

IN Assays.To determine the extent of 3′-processing and strand
transfer, wild-type IN was preincubated at a final concentration of
200 nM with the inhibitor in reaction buffer [50 mM NaCl, 1 mM
HEPES, pH 7.5, 50µM EDTA, 50 µM dithiothreitol, 10% glycerol
(w/v), 7.5 mM MnCl2, 0.1 mg/mL bovine serum albumin, 10 mM
2-mercaptoethanol, 10% dimethyl sulfoxide, and 25 mM MOPS,
pH 7.2] at 30°C for 30 min. Then, a 20 nM concentration of the
5′-end32P-labeled linear oligonucleotide substrate was added, and
incubation was continued for an additional 1 h. Reactions were
quenched by the addition of an equal volume (16µL) of loading
dye (98% deionized formamide, 10 mM EDTA, 0.025% xylene
cyanol, and 0.025% bromophenol blue). An aliquot (5µL) was
electrophoresed on a denaturing 20% polyacrylamide gel (0.09 M
tris-borate, pH 8.3, 2 mM EDTA, 20% acrylamide, and 8 M urea).

Gels were dried, exposed in a PhosphorImager cassette, and
analyzed using a Typhoon 8610 Variable Mode Imager (Amersham
Biosciences, Piscataway, NJ) and quantitated using ImageQuant
5.2. The percent inhibition (%I) was calculated using the following
equation

whereC, N, andD are the fractions of 21-mer substrate converted
to 19-mer (3′-processing product) or strand transfer products for
DNA alone, DNA plus IN, and IN plus drug, respectively. The
IC50 values were determined by plotting the logarithm of drug
concentration vs percent inhibition to obtain the concentration that
produced 50% inhibition.

Results and Discussion

Monte Carlo Procedure and Probe Clusters.Hundreds of
copies of the probe molecules were used to sample the substrate
binding surface of IN via a Monte Carlo approach, functioning
as a simulated annealing docking procedure, to identify favorable
binding sites in the vicinity of the D,D(35)-E motif. In addition,
K156 and K159 have been identified experimentally as being
critical for DNA binding via photocrosslinking studies.25,26

Electrostatics calculations27 support the proposed function of
these two key residues. The sampling sphere was 19 Å in radius
and covers the above key residues. Figure 1a shows the initial
sphere with 450 methanol probe molecules automatically
generated by BOSS. Similarly, the initial evenly distributed
probe-filled spheres were generated for the other probes (i.e.,
Cl-, NH4

+, and CH4). Figure 1b shows the clustered probes at
the end of the Monte Carlo-simulated annealing calculations.
Clearly, well-formed clusters were identified for methanol
probes close to the key residues of D64, D116, E152, K156,
and K159. Because we concentrate only on the active site in
this work, clusters that were formed near the top of the loop
(140-149) or far from the active site were removed from
consideration.

In the simulated annealing docking studies of Cl-, although
few probes gathered close to Mg2+ and between K156 and K159
as well, condensed clusters were not observed in the active site.

Actually, the places where few Cl- probes gathered near Mg2+,
or K156, and K159 were able to be mapped by methanol clusters
as well, indicating that complementary negatively charged
features were not favorably detected in the active site of the
selected snapshots. Apparently, this phenomenon is consistent
with the electrostatic surface potential in the active site of the
IN, as shown in Figure 2 (Mg2+ was removed), where a strong
negative potential (in red) dominates the active site. For the
same reason, however, the distribution of electrostatic potential
accurately reflects the location of the condensed clusters formed
by positively charged fragments, as represented by NH4

+ in this

% I ) 100× [1 - (D - C)/(N - C)] (3)

Figure 1. (a) Starting methanol probe sphere generated by BOSS on
a well-equilibrated protein structure. (b) Clusters identified by methanol
at the end of the Monte Carlo procedure. D64, D116, E152, and loop
residues 140-149 are in green; K156 and K159 residues are in magenta.
The sphere center is defined by atom, Oε, of Q62 of IN, and the
backbone of IN is in blue.
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work. Interestingly, CH4 probes, representing the hydrophobic
feature, were not observed favorably binding in the active site
of the selected snapshots. Therefore, only H-bonding and
positively charged features were identified complementary to
the ensemble of our selected snapshots.

The pharmacophore model based on a single snapshot, so it
is referred to as a static pharmacophore model, has been shown
to perform worse than ones considering multiple protein
conformations.13,14Figure 3a illustrates the H-bond interactions
between the methanol probe and a selected snapshot of IN, a
well-equilibrated structure. Obviously, parent probes (sites 1
and 2) interact with D64 and D116 in such a way that probe
hydrogens are pointing toward the protein residues and, thus,
were regarded as H-bond donor sites. Likewise, methanol probes
(sites 3 and 4) interact with K156 and K159 by accepting
hydrogens from those two residues and thus were treated as
H-bond acceptor sites. However, methanol probes (site 5) near
E152 could form H-bonds with both E152 and K156 by acting
as both an H-bond donor and an H-bond acceptor at the same
time; therefore, this site was treated as both an H-bond donor
and an H-bond acceptor site in the model. Site 6, in Figure 3a,
was located by an ammonium cluster, which is complementary
to the negative potential in the active site, as shown in Figure
2. Accordingly, Figure 3b shows the pharmacophore model
corresponding to the interactions shown in Figure 3a; the
excluded volumes were defined by the three catalytic active
site residues (D64, D116, and E152), the Mg2+ ion, and two
additional key residues (e.g., K156 and K159). The radii of the
excluded volumes were set to 0.86 Å28 for Mg2+ and 1.5 Å for
the rest (representing key amino acid side chains).13

Dynamic Pharmacophore Model. The clustered probe
configurations for selected snapshots are summarized in Figure
4, as exemplified by the case of methanol docking. Similar to
the probe clusters observed in the well-equilibrated frame
(Figure 1b), highly orientated clusters formed near the key
residues (D64, D116, E152, K156, and K159) and some others
were on the top of the active site loop (140-149) or far from
the active surface. The protein conformations together with the
associated clusters of CH3OH and NH4

+ were superimposed
via the five key residues, D64, D116, E152, K156, and K159,

in the catalytic domain (Figure 5a). Each sphere is defined by
the central atom (O for CH3OH and N for NH4

+) of the parent
molecule in the cluster. The grouped spheres in the aligned,
overlaid structures represent consensus features. Seven groups
were identified by the CH3OH and labeled as P1-P7 and two
by NH4

+ probes, i.e., P8-P9. Similar to the methanol probe
interactions with both K156 and E152 in Figure 3, each probe
in group P6 and P5 in Figure 5a is observed sharing the same
interaction mode with their target snapshots. Therefore, the
properties defined by P5 and P6 could be either/both H-bond
donor and/or H-bond acceptor, as labeled as HBDA in Figure
5b,c. Figure 5b,c shows the dynamic pharmacophore model
corresponding to Figure 5a. However, in Figure 5b, the Mg2+

was treated as an excluded volume, as in previous work,13,14

and is referred to as model I hereafter. It should be noted that
while the Mg2+ was treated as an excluded volume in the
pharmacophore model, it was treated as an atom with a charge
of +2 during the docking of feature probes. In addition, Mg2+

was also considered as a positive-charged feature in a pharma-
cophore model with a radius defined by the RMSD of all
grouped Mg2+ atoms from the 10 snapshots. This model,
represented in Figure 5c, is referred to as model II hereafter.
The characteristics of the dynamic pharmacophore models are
summarized in Table 1. In model I, the radius of Mg2+ is 0.86
Å,28 but in model II, it was set to 1.48 Å as the RMSD of all
of the particles in that group.

As compared with a previously published dynamic pharma-
cophore model for IN, which was developed by Carlson et al.,13

the current model conceptually extends the ligand sampling
space to cover a larger portion of the substrate binding surface.

Figure 2. HIV-1 IN surface potential estimated by Grasp. Blue
represents positive potential, and red represents negative surface
potential. Mg2+ was not considered during the surface potential
generation.

Figure 3. (a) H-bond interactions of probes with a well-equilibrated
IN snapshot. (b) Static pharmacophore model derived from methanol-
and ammonium-docked clusters associated with single snapshots. Black
represents excluded volumes located by the key residues. Green
represents H-bond acceptor (HBA), and pink represents H-bond donor
(HBD). Yellow represents the feature that could function as both donor
and acceptor.
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Figure 6 shows a superimposition of the two models in order
to illustrate their differences (excluded volumes are not shown).
The figure was generated by superimposing each model against
a well-equilibrated structure, the starting snapshot for production
phase of MD, which was used as a reference structure for
overlaying of the models. The current model concentrates on
the protein comprised of the D,D(35)E motif and residues K156

and K159, while the previous work focused mainly in the area
of D64, D116, and the loop. Not surprisingly, our HDB2 feature,
which reflects potential interactions between substrate with D64
and D116, align well with site D4 in the previous study.

Model Validation and Database Searching.The original
models (Figure 5b,c) contain too many features and are thus
too stringent to be used in database searching (i.e., no molecules

Figure 4. Methanol-clustered configurations generated from Monte Carlo simulations on each selected snapshot. Blue represents the IN backbone,
and cyan/red molecular model represents the methanol probe molecule. D64, D116, E152, and loop residues 140-149 are in green. K156 and K159
residues are in magenta.
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can be found with nine spatially distributed pharmacophore
elements); thus, they were refined in the manner as previously
described.13,14The refining procedure is similar to that used in
our recent work,14 where we have suggested that a potent
inhibitor compound should interact with D64, D116, E152, and
also K156 and K159 at same time. Therefore, each refined
model should contain at least one feature near E152, one feature
near K156 or K159, and at least one feature near D64 or D116.
Each refined model is an independent search query. The
performance of the original models (model I in Figure 5b and
model II in Figure 5c) was validated in terms of the performance
of each refined query. Twenty independent queries were derived
from both original models. Interestingly, any four-feature query
containing a positively charged group (Pos8 or Pos9 in model
I or Mg2+ in model II) did not identify any hits, probably due
to the fact that most of the published active/inactive inhibitors
lack this feature. However, from both biological studies and
our electrostatic potential prediction (Figure 2), IN has a strong
negative potential surface in the binding pocket although the
substrate DNA binding mode is not known precisely. This
phenomenon prompted us to design novel types of molecules,
which are predicted to favorably interact with the negatively
charged IN binding surface. Therefore, we further reduced the
model II into a three-feature model containing the positively
charged feature. Not surprisingly, very few published inhibitors
could be recognized by the model. However, the three-feature
query from model II was applied to screen our database. Regard-

ing the validation of the queries derived from model I, only
those that could identify at least 20 hits from the 385 active
inhibitors are reported in Table 2. The selectivity index (SI) of
each model was defined and computed, i.e., the ratio of the
identification of actives over the incorrectly identified inactive

Table 1. Characteristics of the Dynamic Pharmacophore Model

location

featurea X (Å) Y (Å) Z (Å) radius (Å)

HBD 1 4.88 -0.06 4.84 1.24
HBD 2 2.60 2.37 4.71 0.97
HBA 3 -4.60 -3.20 10.16 1.24
HBA 4 -5.26 1.00 7.69 1.34
HBDA 5 -8.09 6.30 6.46 1.55
HBDA 6 -6.24 4.12 7.16 0.69
HBD 7 -2.93 6.26 6.71 1.34
Pos8 -1.03 2.24 2.48 0.79
Pos9 0.54 -0.07 4.26 1.2
K156 -9.81 3.19 6.71 1.50
K159 -7.61 -4.22 10.49 1.50
D64 1.64 0.10 2.45 1.50
D116 6.18 1.99 2.17 1.50
E152 -4.59 5.59 4.62 1.50
Mg2+ 4.05 1.10 4.11 0.86 (model I),

1.48 (model II)

a HBD, H-bond donor; HBA, H-bond acceptor; HBDA, could be both
H-bond donor and acceptor; and Pos, positively ionizable feature.

Table 2. Model Validation by a Known Inhibitors Training Set

model type model I model II

query Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

features
containeda

A3,6D1,7 A3,4D2,7 A4,6D2,7 A4,5D2,7 A4D2,6,7 A3D2,6,7 A5D2,5,7 A4D7Mg

active no. 51 89 91 34 49 54 23 7
active %b 21.7 37.8 38.7 14.5 20.9 23.0 9.8 3.0
inactive no. 3 13 18 10 7 3 5 2
inactive %c 0.8 3.4 4.7 2.6 1.8 0.8 1.3 0.5
SI 27.9 11.1 8.2 5.6 11.7 30.0 7.8 5.8
database 10 363 851 62 109 2 10 162

a Ax,yDm,n: refined query, meaning this query containing feature HBAx, HBAy, HBDm, and HBDn, as shown in Figure 5 and Table 1. For example,
A3,6D1,7 is the refined four-feature model keeping HBA3, HBDA6 (here as H-bond acceptor only), HBD1, and HBD7. A4D7Mg is an example of a refined
three-feature model II, which regards Mg2+ as a positively charged feature, and additionally, it contains HBA4 and HBD7 as labeled in Figure 5 and Table
1. Likewise, D2,6,7A3 is another four-feature refined query containing HBD2, HBD7, HBD6 (here as H-bond donor only), and HBA3.b Active %: the
percentage of recognized inhibitors over the overall active inhibitors in the database. For example, A3,6D1,7 could map out 51 active molecules from 235
active inhibitors; therefore, the active % of this model is 51/235) 21.7%.c Inactive %: the percentage of recognized inhibitors over the overall inactive
inhibitors in the database. For example, A3,6D1,7 could map out three active molecules from 385 active inhibitors; therefore, the inactive % of this model is
3/385) 0.7%.

Figure 5. (a) Identification of the conserved binding sites from the
overlain clusters. (b) Dynamic pharmacophore model derived from the
multiple snapshots. Green represents HBA, and pink represents HBD.
Yellow represents a feature that could be both a donor and an acceptor.
Black represents the excluded volume, and red represents the positively
charged feature.
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compounds, as defined by eq 4

whereRactive is the total number of active inhibitors identified
by the query;Rinactive is the total nonzero number of inactive
compounds identified by the query (i.e., inactive compounds
that fit the model and would therefore be incorrectly predicted
to be active);Dactive ) 385 and is the total number of collected
known active inhibitors in our validation database; andDinactive

) 235 and is the total number of collected known inactive
inhibitors in the database.

This SI equation (eq 4) takes into account the differences in
size between our active and inactive inhibitor databases. In an
extreme ideal case, if we assume that only one inactive
compound was falsely identified and all active compounds could
be mapped by a query, the SI value could therefore be as high
as 235. In Table 2, query Q6 showed the highest selectivity
with an SI value of 30.0, among the listed queries. Some active
molecules could be identified by multiple queries. For example,
34 hits in the active inhibitor database were identified by query
Q4 (Table 2), but all of these molecules were able to be
recognized by query Q3 as well. Queries Q2 and Q3 could map
nearly 40% of the known active inhibitors. Interestingly, Q6,
having the highest SI value of 30, maps 57 (54 active and three
inactive compounds from Table 2) of the known inhibitors but
could map only two compounds from the small molecule
database. Q2 and Q3, on the other hand, identified over a
hundred molecules. Not surprisingly, there are overlaps between
the hit lists from database searching with the various queries.
For example, 363 hits were identified by Q2, and 851 were
identified by Q3. Among the two sets, 122 molecules were
recognized by both queries, and nine of them were also
recognized by Q7.

Biological Activity. On the basis of both structural novelty
and the frequency of being identified by multiple queries, we
selected 22 molecules for in vitro assay specific for the IN
enzyme, and the results are presented in Tables 3 and 4. Five
compounds exhibited an IC50 of less than 100µM. Compound

1, also known as piroxanthrone, has anticancer activity and
recently was reported as a human topoisomerase IIR inhibitor.29

Figure 6. Comparison of the current dynamic pharmacophore model
with a previously published pharmacophore model developed by
Carlson et al.,13 indicating that the model derived from the current work
provides a more comprehensive description of the IN substrate binding
site. Gray spheres (D1-D6) represent the H-bond donors in Carlson’s
model. The remaining spheres represent the features comprising the
dynamic pharmacophore model derived from this work, consistent with
Figure 5c. Magenta represents HBD, and green represents HBA. Red
represents the positively charged feature. Yellow indicates that the
feature could function as both an H-bond donor and an H-bond acceptor
with neighboring atoms.

SI ) ( Ractive

Rinactive
)/( Dactive

Dinactive
) (4)

Table 3. Inhibition of Catalytic Activities of HIV-1 IN by Structurally
Novel Molecules Identified from the Four-Feature Queries Derived from
Model I

a 3′-proc, 3′-processing reaction; ST, strand transfer.
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Interestingly, compound1 also inhibits IN with IC50 values of
18 ( 3 and 9( 5 µM for the 3′-processing and strand transfer
reactions, respectively (Table 3). Compound2, with a very
different side chain than previously reported anthraquinones,30,31

showed selectivity for the strand transfer reaction. Compound
12 has an equivalent potency for the strand transfer reaction
with an IC50 value of 10( 4 µM and at least 5-fold selectivity
over the 3′-processing reaction. In addition, compound1 was
able to map to at least five models (Q1, Q3, Q4, Q7 and Q8),
suggesting that multiple binding modes exist and indicating a
high tendency for the molecule to favorably interact with the
target. Figure 7a-c shows a map of compound1 against three
of the five models by which the compound was identified. A

recently published inhibitor, L870,81232 (Figure 7e), and
5-CITEP18 (Figure 7f) were overlaid with compound1 by
mapping them to the model Q3 (Figure 7d). The mapping of
5-CITEP on Q3 is very similar to that as revealed in the X-ray
structure of its complex with IN; however, L870,812 maps with
the two H-bond acceptor/donors (HBA4, HBDA6) near K156
and K159 and one donor (HBD7) near E152, suggesting that
multiple binding modes exist.

Conclusions

Multiple functional group probes were used to sample a broad
binding surface on the IN catalytic domain via Monte Carlo
procedures. Favorable binding locations were used to define
complementary features of the IN active site. An ensemble
of conformations collected at 100 ps intervals from an
MD simulation was used to build dynamic pharmaco-
phore models reflecting native protein dynamics. We have
reported two types of models containing all possible feature
elements as located by the feature probes: (i) in model I, Mg2+

chelating D64 and D116 as resolved via X-ray was treated as
a charged part of the protein and therefore was regarded as an
excluded volume, and (ii) for the first time, we attempted to
build a new type of model, referred to as model II, in which
Mg2+ was treated as a positively charged probe site. Both types
of models were validated by attempting to match them with
known inhibitors. Model I performed much better than model
II. Our own experimental testing indicates that a compound
mapping multiple refined queries shows high potency against
IN.

Table 4. Inhibition of Catalytic Activities of HIV-1 IN by Structurally
Novel Molecules Identified from a Query Q8 Derived from Model II

a 3′-proc, 3′-processing reaction; ST, strand transfer.

Figure 7. Representative molecules mapping against the selected
queries. Black spheres represent excluded areas, green balls represent
HBA, and pink balls represent HBD. The red sphere represents the
positive ionizable feature. (a) Compound1 mapping onto Q2. (b)
Compound1 mapping onto Q3. (c) Compound1 mapping onto Q8.
(d) Overlaying the mapping of three compounds onto Q3. Compound
1 is shown in blue, the same mapping as in part b. L870,81232 is shown
in red, and CITEP18 is shown in green.
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